黄河流域砖石古建筑风化性能评价*

汤永净1 邵振东2

(1. 同济大学土木工程学院,上海,200092;2. 上海仰韶古建筑保护科技发展有限公司,上海,200333)

摘要 通过压汞实验和X射线荧光光谱实验,证明了小于5µm孔径孔隙体积的变化是中国古砖的风 化敏感区域。其中,随年代的久远,小于1µm孔径孔隙体积占总孔隙体积比例数逐渐减少,1~5µm 孔径孔隙体积占总孔隙体积比例逐渐增大。利用古砖风化性能在孔径分布敏感区域的变化特征,可 以对砖石古建筑风化性能进行评价,有利于砖石古建筑的保护

关键词 孔隙体积 孔径 风化 压汞

1 引 言

风化是环境变迁对古砖的主要影响形式,是自然界中温度、水、二氧化碳、氧对古砖的长期作 用。干湿交替、热胀冷缩、冻融循环导致古砖材料产生可逆的体积变化,在材料内部产生新裂缝, 从而改变了古砖材料原有孔结构;水、二氧化碳、氧等因素的长期作用导致古砖材料结构胶结物长 期流失并可能生成新的物质,胶结物流失或新生成物质都改变了古砖原有孔结构。中国四川乐山大 佛风化侵蚀厚度为0.264~0.279mm/a^[1],山西平遥古城墙638 d风化侵蚀厚度为8.03~32.30 mm^[2], 按照此风化侵蚀速度推算,如果不进行有效的保护,二三百年后,一些以砖石材料为主的建筑遗产 不是面貌全非就是已经坍塌。见图1、图2。

通过MIP试验得出孔结构数值对砖的风化性能 进行评价适用文物建筑。Maage 等通过MIP试验得 出的孔隙率和大于3 μ m孔直径的孔隙体积占总孔隙 体积的百分数评判黏土砖的耐久性,建议用DIP 数值作为评定砖耐久性指标,DIP = $\frac{3.2}{D}$ + 2.4 P_{30} , 其中, P_3 为大于3 μ m孔直径的孔隙体积分数, DIP数值小于55时判定砖耐久性不合格,大于70 时为合格^[3]。Robertson等建议用MIP试验中的 进汞压力与体积滞回能评判石灰石砌体的材料耐

图1 山西蒲州古城墙门楼

^{*} 国家自然科学基金(51278359)资助项目。

图2 河南洛阳五花塔

久性。结合电镜扫描试验和结晶试验说明该方法 的可行性和可操作性,并且具有缩短检测时间 的优点^[4], Hansen等对比加拿大和美国规范得 出的黏土砖饱和系数试验值和MIP孔结构试验结 果,得出用阈值孔径对应的孔隙率与总孔隙率比 值作为新的饱和系数建立与规范饱和系数之间的 关系,用以缩短检测时间和提高检测效率^[5], Koroth等提出考虑表面孔径分布的参数对Maage 公式进行修正,以调整用Maage公式计算的低 DIP值具有较好耐久性的情况。其表面孔径分布 参数参照加拿大和美国规范执行。作者认为表面 孔径分布参数也可以用MIP试验完成,在取样时 去除砖表面的粉尘,在其外表面钻孔取样进行试 验^[6], Elert等用MIP试验获得不同烧结温度下的 黏土砖孔隙率和孔径分布,科学选用历史建筑维修 时需要配置的砖^[7], Benavente等指出砖中孔直径 小于2~5µm的孔隙对盐盐结晶最敏感.针对不同烧

结温度的砖用背散射电子图像和MIP法测试孔径与盐结晶程度的关系.强调MIP试验结果中的孔径分 布与盐结晶风化程度的关系^[8],Wardeh等分析了烧结黏土材料冻胀力产生的孔隙体积变化和孔径 分布。由此说明,孔径分布可以用来评价烧结黏土材料的抗冻耐久性^[9],Sagin等通过散射电镜分 析古砖的微观结构,表明小于5μm直径的孔径孔隙对盐结晶和冻融循环较敏感^[10]。这些研究反映 了用MIP和孔结构(含孔隙率、孔径分布)反映砖抗风化性能的可行性,但是,这些方法中涉及的 参数都是来自于特定的砖样品实验结果,不适用于中国古砖的评价。

2 实验样品与方法

2.1 实验样品信息

实验样品来自中国黄河流域6个方圆5km同一区域砖石古建筑实体外墙。这6个古建筑的建造年 代分别为10世纪、11世纪、12世纪、14世纪、16世纪、19世纪。该区域属于温带大陆性季风气候, 干燥少雨。年平均降水562 mm,冬季历史最低温度-30℃外墙砖尺寸为29cm×14cm×7cm。压汞实 验样品形状为1cm×1cm×2cm长方体,样品部位取自同一块外墙砖裸露外侧面;用X荧光分析外墙 砖化学成分,随机在砖裸露外侧面取样,研磨至粉末状,每样品数量20g。压汞、荧光实验样品见 图3。

2.2 压汞实验

实验采用美国麦克仪器公司生产的AutoPoreIV9500型压汞仪,见图4。首先把样品干燥至恒质,然后样品置于膨胀计头部,密封、称重并计算膨胀计重量。将膨胀计送入低压站分析(绝对压

图3 压汞样品以及X荧光实验样品及处置

力0~30 ppsi^①);低压分析结束后取出膨胀计,再次称重(试样、膨胀计与低压压入汞的总重量) 后送入高压站中继续分析(绝对压力30~33000 ppsi)。在给定的外界压力下将汞强制压入砖样 中,采用分步加压法,式(1)为进汞压力与相应孔径的关系。

$$P = \frac{2\delta\cos\theta}{r} \tag{1}$$

其中, *P*为压力 (ppsi); σ 为汞的表面张力 (485 dyn²/cm); *r*为毛细管半径 (nm); θ 为试样与 汞液的接触角 (130°)。

2.3 X射线荧光光谱实验

X射线荧光光谱实验采用德国布鲁克公司生产,型号SRS3400,见图5。样品来自各古砖裸露的外侧面,样品形状为20g粉末状。重复实验取平均值。

图4 AutoPoreIV9500型压汞仪

图5 SRS3400X射线荧光光谱实验仪

^{(1) 1}ppsi= $6.89476 \times 10^3 pa_{\circ}$

⁽²⁾ $1 dyn = 10^{-5} N_{\odot}$

3 实验结果

3.1 压汞实验结果

表1 压汞实验结果										
建步车	孔 附宽/0/	压力/ppsi	压力/ppsi							
	11陈平/70	小于1µm	1 ~ 5µ m							
10世纪	32.6183	22.861	68.984							
11世纪	29.8741	30.270	66.716							
12世纪	33.0540	35.794	56.667							
14世纪	33.8391	69.584	25.346							
16世纪	37.5161	79.306	14.956							
19世纪	36.0846	81.073	14.107							

3.2 X射线荧光光谱实验结果

	表2 化学成分组成						(单位:	(单位:%)			
建造年代 —	质量分数										
	Na ₂ O	MgO	Al_2O_3	SiO_2	SO ₃	K_2O	CaO	Ti ₂ O	Fe ₂ O ₃	烧失量	
10世纪	1.88	2.16	11.80	57.30	0.003	2.31	10.48	0.67	4.01	7.71	
11世纪	1.87	1.96	9.35	56.80	0.13	2.26	10.50	0.64	3.64	8.49	
12世纪	1.92	2.63	8.02	56.80	0.17	2.05	11.00	0.59	4.13	8.70	
14世纪	1.84	2.51	10.50	59.20	0.12	2.70	11.80	0.73	4.86	4.56	
16世纪	1.89	2.34	9.33	57.00	0.04	2.72	11.80	0.66	4.23	6.23	
19世纪	1.76	2.18	11.10	57.60	0.08	2.43	10.62	0.70	4.66	6.70	

4 实验结果分析

表1实验结果得出图6。随年代的久远,小于1μm孔径孔隙体积占总孔隙体积分数逐渐减少, 1~5微米孔径孔隙体积占总孔隙体积分数逐渐增大。在环境变迁的影响下,中国古砖小于5μm孔径 范围是孔径分布变化的敏感区域。这个实验结果和Sagin的实验结果是吻合的。Sagin等通过散射电 镜分析古砖的微观结构,表明小于5μm直径的孔径孔隙对盐结晶和冻融循环较敏感^[10]。

实验样品来源的6个古建筑位于山西黄土高原相同区域。由表2看出,6个样品不仅主量成分含 量相近,其微量成分含量也相近。山西黄土高原气候温差大,年最低气温在零下20~30℃,常见冰 雹、沙暴、飓风。高原的湿陷性黄土含有较多的水溶盐,最大水溶盐含量为4%(重量),呈固态 或半固态分布在各种颗粒的表面;湿陷性黄土颗粒主要为粉土颗粒,基本上无大于0.25mm的中砂 颗粒。古建筑土壤中的水溶盐因砖毛细孔吸附力 进入古建筑砖体,气候变化导致古砖因气候变化 而产生冻融现象。古建筑的基础部位为冻融和水 溶盐两种风化形式共同作用(盐水冻融风化), 古建筑中部和上部的砖因无水溶盐影响其风化形 式主要是冻融风化(淡水冻融风化)。由此看 出,本实验样品和Sagin研究^[10]中的实验样品环 境基本相似,山西黄土高原砖石古砖样品风化形 式也是盐结晶和冻融循环的作用,二者实验结果 是相互吻合印证的。由于中国砖石古建筑大部分 坐落于黄河流域,实验结果也反映了了中国砖石 古建筑的风化性能。

5 结 论

(1) 古砖中小于5µm孔径孔隙体积的变化范围是黄河流域砖石古建筑风化的敏感区域。

(2)由于压汞实验样品体积小,利用古砖孔径分布的敏感性评价古砖的风化性能是可行的, 有利于砖石古建筑的保护。

(3) 建议相关部门重视和加强砖石古建筑风化性能的研究。

参考文献

- [1] 秦中,张婕,彭学艺,等.四川乐山大佛风化的初步探讨. 地理研究, 2005, 24(6):928-934.
- [2] 张中俭,杨志法,卞丙磊等.平遥古城墙基外侧砂岩的风化速度研究.岩土工程学报,2010,32(10):1628-1632.
- [3] Maage M. Frost resistance and pore size distribution in bricks. Materials and structures, 17(101):345-350.
- [4] Robertson W D. The evaluation of the durability of limestone masonry in historic buildings studies in Conservation, 1982, supplement 1: 51-55.
- [5] Hansen W, Kung J H. Pore structure and frost durability of clay bricks. Materials and Structures, 1988, 21:443-447.
- [6] Koroth S R, Feldman D, Fazio P. Development of new durability index for clay bricks. Journal of Architectural Engineering, 1998, 4:87-93.
- [7] Elert K, Cultrone G, Navarro C R, et al. Durability of bricks used in the conservation of historic buildings-influence of composition and microstructure. Journal of cultural heritage, 2003, 4:91-99.
- [8] Benavente D, Linares-Fernandez L, Cultrone G, et al. Influence of microstructure on the resistance to salt crystallization damage in brick. Materials and Structures, 2006, 39:105-113.
- [9] Wardeh G, Perrin B. Freezing-thawing phenomena in fired clay materials and consequences on their durability. Construction and Building Materials, 2008, 22:820-828.
- [10] Sagin E U, Boke H. Characteristics of bricks used in the domes of some historic bath buildings. Journal of Cultural Heritage, 2013, 145:e73-e76.